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Based on a formulation applied in the theory of stochastic processes, a master equation is 
introduced for the size distribution which describes a size reduction process. Using an absolute 
size constant and a scaling concept, we can get a generalized form of the Gandin-Schuhmann 
equation and of the Rosin-Rammler equation for size-reduced products and show the intimate 
relationship between these two formulae. 

From a newly developed fractal point of view, it is shown that the Gaudin-Schuhmann 
equation satisfies a self-similarity law of distribution in the fractal theory and plays an impor- 
tant role in determining the thermoanalytical properties of a powder. As an illustration, DTA 
curves for ground dolomites are shown to be greatly influenced by the difference in particle 
size distribution of the sample. The DTA carves as well as the TG curves reflect well the pow- 
der characteristics; the TG-DTA curves are therefore suggested as being useful for charac- 
terizing powder samples. 
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Introduction 

It is well known that powders play an essential role in ceramic industry, and 
particle size distribution and specific surface area used as parameters to describe 
the powder characteristics. In general, the particle size distribution of a powder is 
often expressed by a function, and a variety of such functions have been proposed 
including a log-normal function, as well as empirical functions such as the Rosin- 
Rammler (R - R) distribution and the Gaudin-Schuhmann (G - S) distribution 
functions. The latter two functions, though they are widely used in practice, ap- 
pear yet to be defined for the effective particle size range to which the functions 
apply. Furthermore, the terms 'coarse grinding', 'medium grinding', and 'fine 
grinding' also seem to be used without any definition; this is often confusing, and, 
in extreme cases, misleading. The problem is that a standard scale is still to be es- 
tablished. 
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The first question that arises in this context is: 

'Are the particle size distribution functions merely experimentally intro- 
duced?' 

It is also known that industrially produced powders, i.e., those obtained by 
mechanical crushing and grinding, fit fairly well the R - R or the G - S distribu- 
tion functions. The G - S distribution function, as is well known, is represented 
by a power law. 

In this article, the phenomenologicaUy obtained R - R and G - S distribution 
functions are derived theoretically by assuming that grinding follows a stochastic 
process. Then, by introducing an absolute size constant, xe, to scale the particle 
size, we obtain a cumulative distribution function, P (x, t), expressed by a power 
law as follows 

P ( x , t ) * ~  . 

This signifies that the particles obey a self-similarity law of distribution; i.e., it 
describes that the powder has a fractal particle size distribution. 

The next question is, then: 

'How is the powder, which is composed of a great number of particles and 
whose size distribution obeys a self-similarity law, characterized by a macro- 
scopic method such as thermal analysis?' 

To answer this question, pulverized dolomite samples differing in particle size 
distribution were taken as illustrative examples. It is shown that a decomposition 
reaction accompanying decarbonation is markedly influenced by the powder 
characteristics. This means that by detecting this decarbonation process using a 
pertinent method, the powder can be characterized by thermal analysis. 

Framework of the theory and illustration 

Model and an equation of motion for  a size reduction process [1--4] 

Here, the grinding process is assumed to follow a Markov process. By intro- 
ducing the cumulative undersize distribution function, P ( x, t ), the population of 
the particles in the range of particle size from x to x + dx at time t becomes 
proportional to ( OP ( x, t )/Ox) dx, and hence, the time evolution of the quantity 
( OP ( x, t )/Ox) dx within the time interval between t and t + dt by fracture, can be 
written as 

(1) 
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It is assumed that in a grinding apparatus such as a mill, a crusher, etc., not all 
the particles are ground at one time, but only those chosen with a certain prob- 
ability are size-reduced. A selection function, S ( x ), is then introduced, where x 
is the particle size, which describes the probability to choose particles for size 
reduction per unit time. Thus, the loss of product in the range of size x and x + dx 
due to fractionation in time interval dt at time t can be written as 

- S ( x ) dt fl~P ( x' t ) )tx ' (2) 

The next step is to describe the supply for the particles in the range of size 
from x to x + dx. Let us assume that a particle of a larger size, a, is ground and 
reduced to a size in the range from x to x + dx. Then the partition function, 
B (a, x), is introduced, which describes the cumulative undersize distribution 
function of the product generated by grinding a single particle of diameter a 
chosen at a probability defined by the selection function, S(a). Thus, the number 
of the particles in the size range from x to x + dx which have been generated per 
unit time from a particle of size a can be expressed by 

S(a)dt{(~)P~:'t))la}{(~B(a'x)) . (3) 

Since the particle size a can take any value larger than x, we obtain from Eq. (3) 

Xm 

~P(a,t) ~B(a,X)dx}da" ~ { S ( a ) d t .  ~a ~x 
x 

(4) 

where, Xm is the maximum particle diameter. 
Now the master equation can be obtained as the sum of Eqs (2) and (4), which 

satisfies Eq. (1). 

O-'~(c)P(x't)~4~'~[~ r~! { ~P(x't)dx} 
~t ~X j j = - S ( x )  Ox 

xm 

bP ( a, t ) . bB ( a,x ) dx } da. (5) 
+ f { S ( a ) -  ~a ~x 

x 

We can solve the equation analytically by explicitly giving actual forms to func- 
tions S (x )  and B ( a, x)  
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Scaling and self-similarity law of distribution 

We adopt S ( x ) = kx v from experimental data [5] and take B ( a, x ) = (x /a )~ .  
By assuming v = ~. and that the functional form holds for all the particle sizes, we 
obtain from the master Eq. (5), 

R ( x,t )=R ( x,O )exp{-kxVt} (6) 

where R ( x, t ) = 1 - P ( x, t ), the oversize cumulative fraction. 
Since the initial value, R (x, 0 ), may be assumed to be nearly 1 from ex- 

perimental data shown in Fig. 1 [6], we obtain the well-known Rosin-Rammler 
distribution function 

R(x,t)=exp{-kxVt}. (7) 

This can be rewritten as 

P (x, t ) =  1 -exp{-kxVt}, (8) 

9( 
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Fig. 1 Rosin-Rammler diagram for ball mill products. Quartz feeds differing in particle size 
were used 
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as the absolute size constant xe, which is a function of time, can be defined as one 
satisfying the following relation: 

k~t = . (9) 

Substituting Eq. (9) into Eq. (8), we obtain 

P ( x , t ) : l - e x p { - ( x l V } ,  (10) 

By expanding the right-hand side in case of x << xe and taking the first term, the 
power law distribution of the form is given as 

e (x , t )o ,  , (11) 

which corresponds to the 'generalized' Gaudin-Schuhmann distribution function 
with arbitrary t as the parameter. The P(x, t) suggests that the undersize distribu- 
tion function obeys a self-similarity law with respect to (x/x~); (x/xr which is the 
size of any particle scaled by the absolute size constant, xe, is the scaling invariant 
in the fractal theory. 

Particle size defined by fractal specific surface area [7, 8] 

The fractal nature or self-similarity in the size distribution of the particles ob- 
tained by grinding suggests that the particles are also statistically self-similar 
with respect to their shape and morphology. Thus, the particle size, x which is 
defined by the mesh size of the sieve should be newly interpreted as the fractal 
particle size; then, the particle size x is defined using the fractal specific surface 
area s 

s o, x - ~ 2 4 7  ( 1 2 )  

where, D is the fractal dimension which is in the range of 

2 < D  <3. 

Thermal analysis and fractal particle size distribution [2, 9] 

The aforementioned fractal nature of the particle size distribution is reflected 
in the first step of a well-established two-step thermal decomposition reaction of 
dolomite [CaMg(CO3)2] in 100% CO2 which is expressed by 
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CaMg(C03)2 =:~ CaC03 + MgO + C021~ 

CaC03 r CaO + C021~. 

The reaction which is described by the first equation and shown up in the DTA 
curves as an endothermic peak, has been argued by many authors (see the review 
by Otsuka [10] and references cited therein). Many factors that affect the shape of 
DTA curves, including the particle size, have been pointed out. However, there 
are few studies concerned with the influence of the particle size distribution on 
thermoanalytical results (see, for example, Gallagher [11]), and even fewer on the 
decomposition of dolomite. 

Experimental 

A well-crystallized sample from Korea was crushed and ground by hand in an 
agate mortar with pestle. The powder thus obtained was passed through a 325- 
mesh Tyler sieve (having an opening of 44 I, tm), to give sample (1). Sample (2) 
was obtained in a similar manner, which consisted of particles passed through a 
100-mesh Tyler sieve (opening: 149 lam). Samples (3) and (4), each having a nar- 
rower particle size range than the samples above, were prepared further by siev- 
ing sample (2) with 150- and 200-mesh Tyler sieves, respectively. This way, 
sample (3) consisting of particles 105-149 lxm in size and sample (4) of 
74-105 lam were obtained. 

The particle size distribution measurement was carried out using a SALD- 
1100 laser diffraction particle size analyzer manufactured by Shimadzu Corp. The 
powder samples were dispersed in a 0.2 wt% aqueous solution of sodium 
metaphosphate glass by applying ultrasonic vibration. 

The TG-DTA measurements were performed using 5 mg portions of the 
sample and reference (~-A1203), charged in a platinum pan mounted on a top- 
load type sample holder of a Rigaku Thermoflex simultaneous TG-DTA ap- 
paratus. The temperature was detected with a Pt-Pt 13%Rh thermocouple fixed in 
a position near the sample. 

Thermoanalytical results and fractal particle size distribution 

In Fig. 2 the particle size distribution is presented by plotting the Rosin-Ram- 
ruler (R-R) diagram for samples (1) and (2). In the R-R diagram, the plots for 
both samples fall on parallel straight lines in the particle size range smaller than 
the absolute size constant xe. The results indicate that the size distribution of the 
particles smaller than xe are expressed by a power law function with v = 0.95; 
hence, from Eq. (11) in view of Eq. (8), the particle size distribution of those par- 
ticles obeys the self-similarity law. 
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Fig. 2 R o s i n - R a m m l e r  diagram o f  dolomite  samples (1) (composed o f  particles 44 Ixm or 
less in size) and (2) (composed  o f  part icles 149 btm or less in size) 

For samples (3) and (4), on the other hand, the particle size range is narrow. 
The self-similarity as set forth cannot be observed in these samples, because they 
each consist of particles in the size range over x~. 

In Fig. 3 are shown the DTA curves for all the samples in the temperature 
range from 700 ~ to about 950~ Samples (1) and (2), which have the self-similar 
particle size distribution, show a distinct peak indicating that the decomposition 
in both samples proceeds swiftly in a smooth manner ascribed to the self catalytic 
effect characteristic of powder samples having this self-similar particle size dis- 
tribution [12]. The endothermic peak for sample (2) tails to a higher temperature 
range than in the case of sample (1), assumably due to the presence of coarser 
grains in which decomposition occurs in the bulk. However, the peak shape, par- 
ticularly in the initial stage of decomposition, is quite similar to that of 
sample (1). 

Samples (3) and (4), which are composed of particles having a narrow size 
range, yield a broader peak accompanied by small peaks or shoulders. This indi- 
cates that the decomposition proceeds over a wider temperature range; moreover, 
it seems as if several side reactions occurred during the main reaction. Since the 
DTA measurements are conducted in thermodynamic non-equilibrium states, it 
seems quite natural that the TG and DTA curves are influenced by the particle 
size distribution. This suggests that, though not strictly quantitatively, the DTA 
curves may describe the particle size distribution of powder samples. 

The TG curves given in Fig. 4 more clearly show the difference between the 
two groups, i.e., the group of samples (1) and (2), and that of samples (3) and (4). 
In Fig. 4, the abscissa is the temperature and the ordinate is the weight loss 
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Fig, 3 DTA curves for dolomite samples each having a specified particle size distribution; 
samples for the DTA curves from the top to the bottom: (1) 44 larn or less in size, (2) 
149 btm or less in size, (3) 105-149 ~tm in size, and (4) 74-105 btm in size. The shaded 
portion in the distribution diagram given on the left hand side of  the curves indicates 
the particle size distribution of  the corresponding samples 

(downward). The main parts of the reaction for the former group are shown as 
parallel lines in the figure, indicating that the main reactions proceed at the same 
apparent rate of weight loss, i.e., at the same apparent rate of reaction. It seems as 
if the decomposition reaction for sample (1) shifted to the higher temperature side 
to give the reaction of sample (2). This similarity is evidently due to the self- 
similar particle size distribution. In other words, the decomposition reaction in 
samples (1) and (2) is more influenced by the powder characteristics. In contrast, 
the latter group yields TG curves with lower apparent reaction rate, and there is 
no similarity between the TG curves. This may suggest that the decomposition 
reaction occurs individually in each grain, in which the character as the bulk is 
more dominant. It can be seen, further, that a swift reaction in a smooth manner 
can be expected for a decomposition reaction dominated by powder charac- 
teristics, particularly for powder composed of particles characterized by the self- 
similar Size distribution. 
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Fig. 4 TG curves for dolomite samples each having a specified particle size distribution, 
corresponding to the DTA curves in Fig. 3 

Conclusion 

The concept of self-similar particle size distribution was introduced to charac- 
terize a powder. This self-similarity or the fractal nature in the particle size dis- 
tribution is naturally observed on powders obtained by size reduction using 
common methods such as milling, crushing, etc. 

It has been also shown that a macroscopic feature of a powder sample, i.e., the 
particle size distribution, influences the thermal behaviour, such as the decom- 
position reaction of the sample. Hence, the results obtained by TG-DTA measure- 
ments, though not strictly quantitatively, effectively reflect the powder 
characteristics. 
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Zusammenfassung - -  Basierend auf einer Aufstellung in der Theorie stochastischer Prozesse 
wurde eine Hauptgleichung fiir die GrrBeverteilung eingefiihrt, die einen Gr6Benminderungs- 
vorgang beschreibt. Unter Anwendung einer absoluten GrrBenkonstante und eines Skalenkon- 
zeptes kann man zu einer verallgemeinerten Form der Gaudin-Schuhmann-Gleichung und der 
Rosin-Rammler-Gleichung gelangen und die enge Beziehnng der beiden Formeln zeigen. 
Von einem neuentwickelten Gesichtspunkt aus wird gezeigt, dab die Gaudin-Schuhmann- 
Gleichung das Gesetz der Selbst~ihnlichkeit der Verteilung in der Fractaltheorie erfiillt und bei 
der Bestimmung thermoanalytischer Eigenschaften yon Pulvern eine bedentende Rolle spielt. 
Als Beispiel wird gezeigt, dal~ DTA-Kurven gemahlener Dolomitproben durch Unterschiede in 
der Partikelgr68enverteilung der Probe entscheidend beeinfluBt werden. Sowohl die DTA- als 
aueh die TG-Kurven spiegeln die Pulvereigenschaften sehr gut wieder; beide werden deshalb 
zur Charakterisierung von Pulverproben vorgeschlagen. 
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